# OXIDATIVE ADDITION OF 2-FORMYL-FURAN AND RELATED PYRROLE AND THIOPHENE COMPOUNDS AT TRIOSMIUM CLUSTERS 

ALEJANDRO J. ARCE, YSAURA DE SANCTIS,<br>Departamento de Quimica, Universidad Simon Bolivar, Caracas, P.O. Box 80659 (Venezuela)<br>and ANTONY J. DEEMING<br>Department of Chemistry, University College London, 20 Gordon Street, London WCIH OAJ (Great Britain)<br>(Received March 25th, 1986)

## Summary

The bridging acyl complexes $\left[\mathrm{Os}_{3} \mathrm{H}\left(\mu-\mathrm{COC}_{4} \mathrm{H}_{3} \mathrm{X}\right)(\mathrm{CO})_{10}\right](\mathrm{X}=\mathrm{NH}, \mathrm{O}$, or S$)$ have been prepared by oxidative addition of the 2 -formyl derivatives of pyrrole, furan, or thiophene $\left(\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{XCHO}\right)$ at $\left[\mathrm{Os}_{3}(\mathrm{CO})_{10}(\mathrm{MeCN})_{2}\right]$ with cleavage of the aldehydic $\mathrm{C}-\mathrm{H}$ bonds. On heating double decarbonylation of the acyl complexes occurs, to afford high yields of the compounds [ $\mathrm{Os}_{3} \mathrm{H}_{2}(\mathrm{CO})_{9}\left(\mu_{3}-\mathrm{C}_{4} \mathrm{H}_{2} \mathrm{X}\right)$ ], reported previously for $\mathrm{X}=\mathrm{NH}$ or O . For $\mathrm{X}=\mathrm{NH}$, two isomers with this formulation were characterised by ${ }^{1} \mathrm{H}$ NMR and IR data; the one containing the $\mu_{3}-2,3-\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{~N}$ ligand isomerises to one containing $\mu_{3}-1,2-C_{4} H_{3} N$. The direct reaction of pyrrole with $\left[\mathrm{Os}_{3}(\mathrm{CO})_{12}\right]$ has been re-examined at lower temperatures than before, and observed to give new products, including [ $\mathrm{Os}_{3} \mathrm{H}(\mathrm{CO})_{10}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~N}\right)$ ], which contains a bridging non-aromatic tautomeric form of pyrrole. The ability of $\mathrm{Os}_{3}$ clusters to stabilize non-aromatic tautomers of aromatic ligands is discussed.

## Introduction

We have been interested in the reactions of $\alpha, \beta$-unsaturated aldehydes with triosmium clusters because oxidative addition can occur with $\mathrm{C}-\mathrm{H}$ cleavage either at the formyl or the alkenyl group [1]. In the former case $\mu$-acyl complexes are generated. 2-Formyl-pyrrole, -furan, or -thiophene might be regarded as $\alpha, \beta$-unsaturated aldehydes, so that oxidative addition could occur at the CHO group or at the ring. Previously it has been shown that oxidative addition of the ring $\mathrm{C}-\mathrm{H}$ bonds occurs for pyrrole [2] and furan [3] to give triosmium clusters.

## Results and discussion

Scheme 1 shows the reactions of the aldehydes with $\left[\mathrm{Os}_{3}(\mathrm{CO})_{10}(\mathrm{MeCN})_{2}\right]$. In the casc of the pyrrole and furan derivatives only products 1 (66\%) and $2(60 \%)$, formed
TABLE 1
SOME SPECTROSCOPIC DATA FOR COMPOUNDS 1-10

| Compound | $\begin{aligned} & \nu(\mathrm{CO})^{a}\left(\mathrm{~cm}^{-1}\right) \\ & \text { Terminal carbonyl ligands } \end{aligned}$ | $\nu(\mathrm{CO})^{b}\left(\mathrm{~cm}^{-1}\right)$ <br> Acyl ligands | ${ }^{1} \mathrm{H} \mathrm{NMR}^{\text {c }}$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\left[\mathrm{Os}_{3} \mathrm{H}(\mathrm{CO})_{10}\left(\mathrm{HNCH}^{x}=\mathrm{CH}^{y} \mathrm{CH}^{z}=\mathrm{CCO}\right)\right]^{d}$ | 2104m, 2066vs, 2056s, 2028vs, 2016s, 2010sh, 1983m | $1425{ }^{f}$ | $\begin{array}{r} 8.90 \mathrm{br} \\ 7.20 \mathrm{~m} \\ 7.00 \mathrm{~m} \\ 6.30 \mathrm{~m} \\ -13.0 \mathrm{~s} \end{array}$ | $\begin{aligned} & \text { NH } \\ & z \\ & x \\ & y \\ & \mathrm{OsH} \end{aligned}$ | $\begin{aligned} & J_{x z} \\ & J_{y z} \\ & J_{x y} \\ & J_{y}(\mathrm{NH}) \\ & J_{z}(\mathrm{NH}) \end{aligned}$ | $\begin{aligned} & 1.2 \\ & 4.0 \\ & 1.6 \\ & 2.4^{\mathrm{g}} \\ & 2.5^{\mathrm{g}} \end{aligned}$ |
| $\underset{(2)}{\left[\mathrm{Os}_{3} \mathrm{H}(\mathrm{CO})_{10}\left(\mathrm{OCH}^{x}=\mathrm{CH}^{y} \mathrm{CH}^{2}=\mathrm{CCO}\right)\right]^{d}}$ | 2100m, 2062vs, 2052s, 2022vs, 2010s, 2006sh, $1990 \mathrm{~m}, 1974 \mathrm{~m}$, | 1430 | $\begin{gathered} 8.14 \mathrm{~d} \\ 6.78 \mathrm{dd} \\ 7.34 \mathrm{~d} \\ -13.6 \mathrm{~s} \end{gathered}$ | $\begin{aligned} & x \\ & y \\ & z \\ & \text { OsH } \end{aligned}$ | $\begin{aligned} & J_{x y} \\ & J_{y z} \\ & J_{x z} \end{aligned}$ | $\begin{aligned} & 1.7 \\ & 3.7 \\ & 0.7 \end{aligned}$ |
| $\left[\mathrm{Os}_{3} \mathrm{H}(\mathrm{CO})_{10}\left(\mathrm{SCH}^{x}=\mathrm{CH}^{y} \mathrm{CH}^{z}=\mathbf{C C O}\right)\right]^{e}$ | 2106m, 2065vs, 2054s, 2023vs, 2014vs, 2009sh, 1995m | 1435 | $\begin{gathered} 7.81 \mathrm{~m} \\ 7.14 \mathrm{dd} \\ -13.6 \mathrm{~s} \end{gathered}$ | $\begin{aligned} & x, z \\ & y \\ & \text { OsH } \end{aligned}$ | $\begin{aligned} & J_{x y} \\ & J_{y z} \end{aligned}$ | $\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$ |
| $\underset{(4)}{\left[\mathrm{Os}_{3} \mathrm{H}(\mathrm{CO})_{10}\left(\mathrm{SCH}^{x}=\mathrm{CH}^{y} \mathrm{C}=\mathrm{CCH}^{2} \mathrm{O}\right)\right]^{e}}$ | $2122 \mathrm{~m}, 2069 \mathrm{~s}, 2049 \mathrm{~s}$, $2021 \mathrm{vs}, 2008 \mathrm{~s}, 1980 \mathrm{~m}$ 1938m, | 1445 | $\begin{gathered} 9.15 \mathrm{~d} \\ 8.07 \mathrm{~d} \\ 7.51 \mathrm{dd} \\ -15.0 \mathrm{~s} \end{gathered}$ | $\begin{aligned} & z \\ & y \\ & x \\ & \mathrm{OsH} \end{aligned}$ | $\begin{aligned} & J_{x y} \\ & J_{x z} \end{aligned}$ | $\begin{aligned} & 4.7 \\ & 0.5 \end{aligned}$ |
| $\underset{(5)}{\left[\mathrm{Os}_{3} \mathrm{H}_{2}(\mathrm{CO})_{9}\left(\mathrm{HNC}=\mathrm{CCH}^{x}=\mathrm{CH}^{y}\right)\right]^{e}}$ | $2105 \mathrm{~m}, 2075 \mathrm{vs}, 2050 \mathrm{vs}$, 2027vs, 2022sh, 2008vs, $1991 \mathrm{~m}, 1978 \mathrm{~m}, 1950 \mathrm{vw}$ | h | $\left.\begin{array}{r} 8.60 \mathrm{br} \\ 7.16 \mathrm{dd} \\ 6.70 \mathrm{dd} \\ -18.9 \mathrm{~s} \\ -16.7 \mathrm{br} \\ -21.1 \mathrm{br} \end{array}\right\}$ | $\begin{aligned} & \mathrm{NH} \\ & y \\ & x \\ & \mathrm{OsH}_{2} \\ & \mathrm{OsH}_{2} \end{aligned}$ | $\begin{aligned} & J_{x y} \\ & J_{x}(\mathrm{NH}) \\ & J_{y}(\mathrm{NH}) \\ & \left(30^{\circ} \mathrm{C}\right) \\ & \left(-85^{\circ} \mathrm{C}\right) \end{aligned}$ | $\begin{aligned} & 3.1 \\ & 1.3^{\mathrm{g}} \\ & 1.7^{\mathrm{g}} \end{aligned}$ |


| $\left[\mathrm{Os}_{3} \mathrm{H}_{2}(\mathrm{CO}),\left(\overparen{\left.\left.\mathrm{OC}=\mathrm{CCH}^{x}=\mathrm{CH}^{y}\right)\right]^{e} .}\right.\right.$ <br> (6) | 2108m, 2084vs, 2058vs, | 7.80d | $\boldsymbol{x}$ | $J_{x y}$ | 2.0 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2036vs, 2028s, 2010s, | 7.00d | $y$ |  |  |
|  | 2000m, 1992m, 1977w | $-19.4 \mathrm{~s}$ | $\mathrm{OsH}_{2}$ | $\left(35^{\circ} \mathrm{C}\right)$ |  |
|  |  | $\left.\begin{array}{l} -17.4 \mathrm{br} \\ -21.5 \mathrm{br} \end{array}\right\}$ | $\mathrm{OsH}_{2}$ | $\left(-80^{\circ} \mathrm{C}\right)$ |  |
| $\begin{equation*} \left[\mathrm { Os } _ { 3 } \mathrm { H } _ { 2 } ( \mathrm { CO } ) _ { 9 } \left(\underset{\left.\left.\mathrm{SC}=\mathrm{CCH}^{x}=\mathrm{CH}^{y}\right)\right]^{e}}{ }\right.\right. \tag{9} \end{equation*}$ | 2108m, 2081vs, 2054vs, | 7.44 d | $\boldsymbol{x}$ | $J_{x y}$ | 5.1 |
|  | 2033vs, 2024s, 2008vs, | 7.29d | $y$ |  |  |
|  | $1999 \mathrm{~s}, 1985 \mathrm{~m}, 1973 \mathrm{mw},$ | $-19.2 \mathrm{~s}$ | $\mathrm{OsH}_{2}$ | $\left(35^{\circ} \mathrm{C}\right)$ |  |
|  |  | $\left.\begin{array}{l} -18.3 \mathrm{br} \\ -20.2 \mathrm{br} \end{array}\right\}$ | $\mathrm{OsH}_{2}$ | $\left(-80^{\circ} \mathrm{C}\right)$ |  |
| $\left.\left.\left.\underset{(8)}{\left[\mathrm { Os } _ { 3 } \mathrm { H } _ { 2 } ( \mathrm { CO } ) _ { 9 } \left(\mathrm{NCH}^{x}=\mathrm{CH}^{y} \mathrm{CH}^{x}=\mathrm{C}\right.\right.}\right)\right]\right]^{e, i}$ | 2105m, 2080vs, 2050vs, | 7.50 dd | $z^{8}$ | $J_{x y}$ | 4.3 |
|  | 2027sh, 2025vs, 2005vs, | 7.40 dd | $\boldsymbol{x}$ | $J_{y z}$ | 1.2 |
|  | 1997m, 1978m | 6.62 dd | ${ }^{\boldsymbol{y}}$ |  | 0.9 |
|  |  | $-16.3 \mathrm{~s}$ | $\mathrm{OsH}_{2}$ | $\left(30^{\circ} \mathrm{C}\right)$ |  |
|  |  | $\left.\begin{array}{l}-15.6 \mathrm{~d} \\ -17.1 \mathrm{~d}\end{array}\right\}$ | $\mathrm{OsH}_{2}$ | $\left(-40^{\circ} \mathrm{C}\right)^{j}$ |  |
| $\left[\mathrm{Os}_{3} \mathrm{H}(\mathrm{CO})_{10}\left(\mathrm{~N}=\mathrm{CCH}^{x}=\mathrm{CH}^{y} \mathrm{CH}_{2}{ }^{x}\right)\right]^{e}$ | 2102m, 2060vs, 2050s, | 7.04 dt | $x$ | $J_{x y}$ | 5.3 |
|  | 2020vs, $2006 \mathrm{~m}, 2001 \mathrm{~m}$, | 6.60dt | $y$ | $J_{x z}$ | 0.7 |
|  | 1993m, 1980w | 4.70 br | $z$ | $J_{y z}$ | 1.7 |
|  |  | -15.2s | OsH |  |  |
| $\left[\mathrm{Os}_{3} \mathrm{H}_{2}(\mathrm{CO})_{9}\left(\mathrm{MeNC}=\mathrm{CCH}^{x}=\mathrm{CH}^{y}\right)\right]^{e}$(10) | 2104m, 2074vs, 2048vs, | 7.06 d | $\boldsymbol{x}$ | $J_{x y}$ | 3.6 |
|  | 2025 vs , 2022sh, 1998vs, | 6.66d | $y$ |  |  |
|  | 1989m, 1976m, 1945w | 3.60s | NMe |  |  |
|  |  | $-18.8 \mathrm{~s}$ | $\mathrm{OsH}_{2}$ | $\left(27^{\circ} \mathrm{C}\right)$ |  |
|  |  | $\left.\begin{array}{l} -17.0 \mathrm{br} \\ -21.1 \mathrm{br} \end{array}\right\}$ | $\mathrm{OsH}_{2}$ | $\left(-80^{\circ} \mathrm{C}\right)$ |  |

[^0]

SCHEME 1
by $\mathbf{C}-\mathbf{H}$ cleavage at the formyl group, were obtained. The thiophene derivative likewise gave 3 ( $40 \%$ ) as the major product but some compound 4 ( $30 \%$ ) was also obtained. Compounds 1 to 3 are closely related to known bridging acyl compounds of the type $\left[\mathrm{Os}_{3}(\mu-\mathrm{H})(\mu-\mathrm{RCO})(\mathrm{CO})_{10}\right.$ ] [4-6] and show similar $\nu(\mathrm{CO})$ absorptions for the terminal CO ligands and for the bridging acyl ( $1425-1435 \mathrm{~cm}^{-1}$ ) (see Table 1). The formyl group is preserved in compound 4 , as shown by the ${ }^{1} \mathrm{H}$ NMR spectrum ( $\delta(\mathrm{CHO}) 9.15 \mathrm{ppm})$. Compound 4 is structurally directly comparable with $\left[\mathrm{Os}_{3} \mathrm{H}(\mathrm{CO})_{10}(\mathrm{MeC}=\mathrm{CHCOMe})\right]$ (X-ray structure [7]) and the aldehydic derivatives $\left[\mathrm{Os}_{3} \mathrm{H}(\mathrm{CO})_{10}(\mathrm{RC}=\mathrm{CHCHO})\right](\mathrm{R}=\mathrm{Ph}$ or Me$)$ [1] which contain chelating $\alpha, \beta$-unsaturated aldehydes or ketones. When the ligand X in $\left[\mathrm{Os}_{3} \mathrm{H}(\mathrm{X})(\mathrm{CO})_{10}\right]$ is chelating at one Os atom, the $\nu(\mathrm{CO})$ spectrum is characteristically different from that when $X$ is bridging as in compounds 1 to 3 . The behaviour of 2 -formylthiophene with $\left[\mathrm{Os}_{3}(\mathrm{CO})_{10}(\mathrm{MeCN})_{2}\right]$ is very like that of $\mathrm{RCH}=\mathrm{CHCHO}(\mathrm{R}=\mathrm{Me}$ or Ph$)$ in giving competitive $\mathrm{C}-\mathrm{H}$ cleavage at the CHO group and the $\beta$-vinyl site [1].

There seems no intrinsic reason why 2-formylfuran and 2-formylpyrrole could not also react at the ring sites as well as, or instead of, at the CHO group. Indeed, furan itself reacts with $\left[\mathrm{Os}_{3}(\mathrm{CO})_{10}(\mathrm{MeCN})_{2}\right]$ to give $\left[\mathrm{Os}_{3} \mathrm{H}\left(\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{O}\right)(\mathrm{CO})_{10}\right](26 \%$ yield) by metallation at the 2-positon. The 2 -furanyl group was shown by the X-ray structure to bridge in a $\eta^{1}, \eta^{2}$-manner, like a bridging vinyl ligand [3].

Compounds 1 to 3 readily undergo thermal decarbonylation to give compounds 5 to 8, as shown in Scheme 2. Interestingly compound 5 was reported earlier to be formed by direct reaction of pyrrole at very high temperatures in refluxing decalin


SCHEME 2


SCHEME 3
(around $190^{\circ} \mathrm{C}$ ) [2]. We have re-examined these compounds and have found that compound 5 as reported here is directly comparable with compounds 6 and 7, and that the compound we originally and incorrectly described as 5 [2] is actually an isomer which we now formulate as compound 8 . Indeed in the decarbonylation of 1 both isomers 5 and 8 are obtained. Compound 6 was reported earlier to be formed by decarbonylation of $\left[\mathrm{Os}_{3} \mathrm{H}\left(\mu_{2}-\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{O}\right)(\mathrm{CO})_{10}\right.$ ], itself formed from furan [3]. This is the first report of the thiophene-2,3-diyl compound 7, and it is perhaps surprising that this is formed rather than any compound containing Os-S bonds in view of the proliferation of such compounds [8].

In our initial report on the products of the reaction of $\left[\mathrm{Os}_{3}(\mathrm{CO})_{12}\right]$ and pyrrole and $N$-methylpyrrole we commented upon the differences between the two derivatives $\left[\mathrm{Os}_{3} \mathrm{H}(\mathrm{CO})_{9}\left(\mu_{3}-\mathrm{C}_{4} \mathrm{H}_{2} \mathrm{NR}\right)\right](\mathrm{R}=\mathrm{H}$ or Me$)$ that were isolated [2]. Compound 10 when $R=M e$ can now be seen to be spectroscopically entirely analogous to compounds 5 to 7 , and different from the species we originally reported with $R=H$. When there is an NH atom, the initially formed compound 5 isomerises by transfer of this hydrogen atom to carbon to give the more stable isomer 8. Carrying out the reaction of pyrrole with $\left[\mathrm{Os}_{3}(\mathrm{CO})_{12}\right]$ at temperatures below $190^{\circ} \mathrm{C}$ gave a mixture of isomers 5 and 8 and other products (Scheme 3; see later).

The formulation of cluster 8 as the N,C-bonded form is based on ${ }^{1} \mathrm{H}$ NMR and IR data. The originally reported $\nu(\mathrm{NH})$ absorptions for 8 at 3670 and $3600 \mathrm{~cm}^{-1}$ are spurious. These absorptions were found for Nujol mulls but completely pure samples give no $\nu(\mathrm{NH})$ absorptions in this region, whereas isomer 5 shows an absorption at $3450 \mathrm{~cm}^{-1}$, close to that found for compound $1\left(3464 \mathrm{~cm}^{-1}\right)$. The ${ }^{1} \mathrm{H}$ NMR signal originally reported for NH at $\delta 7.50 \mathrm{ppm}$ can with hindsight be seen to be too sharp for such a resonance, and is now assigned to CH (see Table 1). Isomer 8 gives ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR signals for the $C \mathrm{H}$ atoms at $\delta 117.2,149.3$, and 167.8 ppm (3-, 4-, and 5 -positions) and a weak absorption at $\delta 175.9 \mathrm{ppm}$ (2-position).

We have examined the conversion of isomer 5 into isomer 8 . Treatment of isomer 5 with $\mathrm{D}_{2} \mathrm{O} / \mathrm{CDCl}_{3}$ caused a very slow exchange of the NH proton over many hours, but upon addition of catalytic quantities of $\mathrm{NEt}_{3}$ the exchange was complete within $2-3 \mathrm{~min}$ at room temperature, that is within the time required to record a ${ }^{1} \mathrm{H}$ NMR spectrum. Figure 1 shows the NMR spectra confirming this exchange. On standing a solution of $\left[\mathrm{Os}_{3} \mathrm{H}_{2}(\mathrm{CO})_{9}\left(\mathrm{C}_{4} \mathrm{H}_{2} \mathrm{ND}\right)\right]$ (5) (still containing an excess of $\left.\mathrm{D}_{2} \mathrm{O}\right)$ is slowly converted into $\left[\mathrm{Os}_{3} \mathrm{HD}(\mathrm{CO})_{9}\left(\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{~N}\right)\right.$ ], isomer 8. Thus the H -atom transfer to carbon is from osmium and not nitrogen. Various mechanisms are possible, but not an intraligand H -atom transfer. We have formulated compound 8 in Scheme 2 with bridging nitrogen, but we cannot yet actually distinguish this from


Fig. 1. ${ }^{1} \mathrm{H}$ NMR spectra of $\mathrm{CDCl}_{3}$ solutions of (A) cluster $8\left[\mathrm{Os}_{3} \mathrm{H}_{2}\left(\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{~N}\right)(\mathrm{CO})_{9}\right]$, (B) cluster 5 $\left[\mathrm{Os}_{3} \mathrm{H}_{2}\left(\mathrm{C}_{4} \mathrm{H}_{2} \mathrm{NH}\right)(\mathrm{CO})_{9}\right]$, and (C) cluster 5 after treatment of a $\mathrm{CDCl}_{3}$ solution with $\mathrm{D}_{2} \mathrm{O}$ and $\mathrm{Et}_{3} \mathrm{~N}$ (catalytic amounts).
a carbon-bridged form. We are trying to grow good crystals for an X-ray structural determination in order to distinguish between forms $\mathbf{8 a}$ and $\mathbf{8 b}$.

(8a)

(8b)

The other product from the reaction of pyrrole with $\left[\mathrm{Os}_{3}(\mathrm{CO})_{12}\right]$ at $174^{\circ} \mathrm{C}$ is compound $9,\left[\mathrm{Os}_{3} \mathrm{H}(\mathrm{CO})_{10}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~N}\right)\right]$. As with 8, compound 9 is bonded through nitrogen. The IR spectrum near $2000 \mathrm{~cm}^{-1}$ is almost indistinguishable from that of the 2-pyridyl compound $\left[\mathrm{Os}_{3} \mathrm{H}(\mathrm{CO})_{10}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right)\right]$ and other 2-metallated nitrogen heterocycles [9], and this confirms the N,C-mode of attachment. The ${ }^{1} \mathrm{H}$ NMR spectrum (Table 1) confirms the non-aromatic form of the ligand, Indeed, in compound 9 an unstable tautomer of free pyrrole has been stabilised (see Scheme 4). The two non-aromatic forms, $\mathbf{B}$ and $\mathbf{C}$, without $\mathrm{N}-\mathrm{H}$ bonds, are clearly unstable


SCHEME 4
with respect to $\mathbf{A}$. We believe we have trapped form $\mathbf{B}$ in compound 9 with the $\mathrm{CH}_{2}$ group adjacent to nitrogen on the basis of the ${ }^{1} \mathrm{H}$ NMR shift for the $\mathrm{CH}_{2}$ protons which are accidentally isochronous. In both compounds 8 and 9 non-aromatic forms of the ligand are stabilized, the loss of aromaticity being compensated for by the formation of N -Os bonds. The stabilization of the cyclohexadienone form of phenol by the triosmium cluster has previously been described, and this is mainly a consequence of forming strong $\sigma$-bonds between osmium and the $\mu_{3}$-ligand.

## Experimental

2-Formylfuran (2-furaldehyde), 2-formylpyrrole (2-pyrrolaldehyde), and 2-formylthiophene (2-thiophenaldehyde) were synthesised by literature methods or purchased from Aldrich. $\left[\mathrm{Os}_{3}(\mathrm{CO})_{10}(\mathrm{MeCN})_{2}\right]$ was synthesised as described earlier [1].

## Reaction of $\left[\mathrm{Os}_{3}(\mathrm{CO})_{10}(\mathrm{MeCN})_{2}\right]$

2-Formylfuran. A solution of $\left[\mathrm{Os}_{3}(\mathrm{CO})_{10}(\mathrm{MeCN})_{2}\right](0.300 \mathrm{~g})$ and freshly purified $\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{O}_{2}\left(1 \mathrm{~cm}^{3}\right)$ in $\mathrm{LiAlH}_{4}$-dried cyclohexane ( $50 \mathrm{~cm}^{3}$ ) was heated under reflux under $\mathrm{N}_{2}$ for 4 h . Removal of the solvent under vacuum and separation of the residue by TLC ( $\mathrm{SiO}_{2}$, eluant, n-hexane) gave four bands. The main yellow band gave $\left[\mathrm{Os}_{3} \mathrm{H}(\mathrm{CO})_{10}(\mu-\mathrm{OCH}=\mathrm{CHCH}=\mathrm{CCO})\right](2)$, as yellow crystals $(0.180 \mathrm{~g}, 60 \%)$, and another band gave $\left[\mathrm{Os}_{3} \mathrm{H}_{2}(\mathrm{CO})_{10}\right.$ ] as purple crystals $(0.030 \mathrm{~g}, 10 \%)$. The other two bands only gave traces of compounds which were not characterised.

2-Formylpyrrole. A solution of $\left[\mathrm{Os}_{3}(\mathrm{CO})_{10}(\mathrm{MeCN})_{2}\right](0.350 \mathrm{~g})$ and $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{ON}$ ( 0.30 g ) in dried cyclohexane ( $40 \mathrm{~cm}^{3}$ ) was heated under reflux for 3 h under nitrogen. The brown residue after removal of solvent under vacuum was separated by TLC ( $\mathrm{SiO}_{2}$; eluant, pentane) and gave four bands of which only one gave any significant amount of material which was characterised as $\left[\mathrm{Os}_{3} \mathrm{H}(\mathrm{CO})_{10}(\mu\right.$ $\mathrm{HNCH}=\mathrm{CHCH}=\mathrm{CCO}$ ) (1), as yellow crystals $(0.200 \mathrm{~g}, 66 \%)$.

2-Formylthiophene. A solution of $\left[\mathrm{Os}_{3}(\mathrm{CO})_{10}(\mathrm{MeCN})_{2}\right](0.250 \mathrm{~g})$ and freshly distilled $\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{OS}\left(2 \mathrm{~cm}^{3}\right)$ in dried cyclohexane ( $30 \mathrm{~cm}^{3}$ ) was heated under reflux under $\mathrm{N}_{2}$ for 2 h . The orange-yellow residue after removal of solvent was separated by TLC $\left[\mathrm{SiO}_{2}\right.$; eluant, petroleum ether (b.p. $\left.\left.40-60^{\circ} \mathrm{C}\right)\right]$ to give only two bands. The main one gave $\left[\mathrm{Os}_{3} \mathrm{H}(\mathrm{CO})_{10}(\mu-\overline{\mathrm{SCH}=\mathrm{CHCH}=\mathrm{CCO}}](3)\right.$, as yellow crystals $(0.080 \mathrm{~g}$, $40 \%)$ and $\left[\mathrm{Os}_{3} \mathrm{H}(\mathrm{CO})_{10}(\mathrm{SCH}=\mathrm{CHC}=\mathrm{CCHO})\right]$ (4), as yellow crystals $(0.060 \mathrm{~g}, 30 \%)$.

## Reaction of $\left[\mathrm{Os}_{3}(\mathrm{CO})_{12}\right]$ with pyrrole

The reaction previously carried out in refluxing decalin [2] was repeated at somewhat lower temperatures. A solution of $\left[\mathrm{Os}_{3}(\mathrm{CO})_{12}\right](0.200 \mathrm{~g})$ and pyrrole (3 $\mathrm{cm}^{3}$ ) in n -decane ( $50 \mathrm{~cm}^{3}$ ) was heated under reflux for 4 h . Removal of the solvent
under vacuum and TLC separation $\left(\mathrm{SiO}_{2}\right.$; eluant, petroleum ether (b.p. $40-60^{\circ} \mathrm{C}$ )) gave four bands yielding: $\left.\left[\mathrm{Os}_{3} \mathrm{H}_{2}(\mathrm{CO})_{9}\right)\left(\mu_{3}-\mathrm{NCH}=\mathrm{CHCH}=\mathrm{C}\right)\right](8)$, as yellow crystals $(0.080 \mathrm{~g}, 40 \%)$ the isomeric form of this $\left[\mathrm{Os}_{3} \mathrm{H}_{2}(\mathrm{CO})_{9}\left(\mu_{3}-\mathrm{NH}=\mathrm{CCCH}=\mathrm{CH}\right)\right]$ (5), as pale yellow crystals ( $0.050,25 \%$ ), $\left[\mathrm{Os}_{3} \mathrm{H}(\mathrm{CO})_{10}\left(\mu-\mathrm{N}=\mathbf{C C H}=\mathrm{CHCH}_{2}\right)\right]$ (9), as yellow crystals $(0.040 \mathrm{~g}, 20 \%)$, and a trace of $\left[\mathrm{Os}_{3} \mathrm{H}_{2}(\mathrm{CO})_{10}\right]$.

Thermolysis of acyl compounds 1-3
Compound 1. A solution of $\left[\mathrm{Os}_{3} \mathrm{H}(\mathrm{CO})_{10}(\mathrm{HNCH}=\mathrm{CHCH}=\mathrm{CCO})\right](0.200 \mathrm{~g})$ in n-decane ( $50 \mathrm{~cm}^{3}$ ) was heated under reflux for 15 min . Removal of solvent under vacuum and TLC separation ( $\mathrm{SiO}_{2}$, eluant: petroleum ether (b.p. $40-60^{\circ} \mathrm{C}$ )) gave two main yellow bands yielding $\left[\mathrm{Os}_{3} \mathrm{H}_{2}(\mathrm{CO})_{9}(\mathrm{NCH}=\mathrm{CHCH}=\mathrm{C})\right](8),(0.080 \mathrm{~g}, 40 \%)$ and its isomer (5), ( $0.060 \mathrm{~g}, 30 \%$ ) both as yellow crystals. Using rather lower temperatures (refluxing n-octane) gave mainly compound 5 (65\%).

Compound 2. A solution of $\left[\mathrm{Os}_{3} \mathrm{H}(\mathrm{CO})_{10}(\mathrm{OCH}=\mathrm{CHCH}=\mathrm{CCO})\right](0.150 \mathrm{~g})$ in octane ( $30 \mathrm{~cm}^{3}$ ) was heated under reflux for 4 h . Removal of the solvent under vacuum and TLC separation as above gave several minor bands which were uncharacterised and one main yellow one which yielded $\left[\mathrm{Os}_{3} \mathrm{H}_{2}(\mathrm{CO})_{9}{ }^{-}\right.$ $(\mathrm{OC}=\mathrm{CCH}=\mathrm{CH})](6)$, as yellow crystals $(0.060 \mathrm{~g}, 40 \%)$ which was characterised by comparison with published spectroscopic data for this compound [3].

Compound 3. A solution of $\left[\mathrm{Os}_{3} \mathrm{H}(\mathrm{CO})_{10}(\mathrm{SCH}=\mathrm{CHCH}=\mathrm{CCO})\right](0.125 \mathrm{~g})$ in cyclohexane ( $50 \mathrm{~cm}^{3}$ ) was heated under reflux for 15 h and subsequent work-up as above gave two main species: $\left[\mathrm{Os}_{3} \mathrm{H}_{2}(\mathrm{CO})_{9}(\widetilde{\mathrm{SC}=\mathrm{CCH}=\mathrm{CH}})\right]$ (7) as yellow crystals ( $0.062 \mathrm{~g}, 50 \%$ ) and recovered $3(0.031 \mathrm{~g} .25 \%)$.

## References

1 A.J. Arce, Y. De Sanctis and A.J. Deeming, J. Organomet. Chem., 295 (1985) 365.
2 C. Choo Yin and A.J. Deeming, J. Chem. Soc., Dalton Trans., (1982) 2563.
3 D. Himmelreich and G. Müller, J. Organomet. Chem., 297 (1985) 341.
4 K.A. Azam and A.J. Deeming, J. Chem. Soc., Chem. Commun., (1977) 472; K.A. Azam and A.J. Deeming, J. Mol. Cat., 3 (1977) 207; K.A. Azam, A.J. Deeming and I.P. Rothwell, J. Chem. Soc., Dalton Trans., (1981) 91.
5 A. Mayr, Y.C. Lin, N.M. Boag and H.D. Kaesz, Inorg. Chem., 21 (1982) 1704.
6 B.F.G. Johnson, J. Lewis, T.I. Odiaka and P.R. Raithby, J. Organomet. Chem., 216 (1981) C56.
7 A.J. Deeming, P.J. Manning, I.P. Rothwell, M.B. Hursthouse and N.P.C. Walker, J. Chem. Soc., Dalton Trans., (1984) 2039.
8 R.D. Adams, Acc. Chem. Res., 16 (1983) 67; R.D. Adams and J.P. Selegue in F.G.A. Stone, G. Wilkinson and E.W. Abel (Eds.), Comprehensive Organometallic Chemistry, Pergamon Press, Oxford, 1982, Vol. 4, p. 967.
9 J.R. Shapley, O.E. Samkoff, C. Bueno and M.R. Churchill, Inorg. Chem., 21 (1982) 634.


[^0]:    ${ }^{a}$ Cyclohexane solutions. ${ }^{b}$ Fluorolube mulls. ${ }^{c} 100 \mathrm{MHz}$ at room temperature; chemical shifts $\delta(\mathrm{ppm}) ; J(\mathrm{~Hz}) .{ }^{d}\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}$ solution. ${ }^{e} \mathrm{CDCl} \mathbf{H}_{3}$ solution. ${ }^{f} \boldsymbol{\nu}(\mathrm{NH}) 3464$ $\mathrm{cm}^{-1} .{ }^{8}$ Coupling not well resolved in $\mathrm{H}^{2}$ signal. ${ }^{h} \nu(\mathrm{NH}) 3450 \mathrm{~cm}^{-1} .{ }^{i}$ This compound was originally reported [2] as compound 5 but is now reformulated.

