Journal of Organometallic Chemistry, 311 (1986) 371-378 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

OXIDATIVE ADDITION OF 2-FORMYL-FURAN AND RELATED PYRROLE AND THIOPHENE COMPOUNDS AT TRIOSMIUM CLUSTERS

ALEJANDRO J. ARCE, YSAURA DE SANCTIS,

Departamento de Quimica, Universidad Simon Bolivar, Caracas, P.O. Box 80659 (Venezuela)

and ANTONY J. DEEMING

Department of Chemistry, University College London, 20 Gordon Street, London WC1H OAJ (Great Britain)

(Received March 25th, 1986)

Summary

The bridging acyl complexes $[Os_3H(\mu-COC_4H_3X)(CO)_{10}]$ (X = NH, O, or S) have been prepared by oxidative addition of the 2-formyl derivatives of pyrrole, furan, or thiophene (C₄H₃XCHO) at $[Os_3(CO)_{10}(MeCN)_2]$ with cleavage of the aldehydic C-H bonds. On heating double decarbonylation of the acyl complexes occurs, to afford high yields of the compounds $[Os_3H_2(CO)_9(\mu_3-C_4H_2X)]$, reported previously for X = NH or O. For X = NH, two isomers with this formulation were characterised by ¹H NMR and IR data; the one containing the μ_3 -2,3-C₄H₃N ligand isomerises to one containing μ_3 -1,2-C₄H₃N. The direct reaction of pyrrole with $[Os_3(CO)_{12}]$ has been re-examined at lower temperatures than before, and observed to give new products, including $[Os_3H(CO)_{10}(C_4H_4N)]$, which contains a bridging non-aromatic tautomeric form of pyrrole. The ability of Os₃ clusters to stabilize non-aromatic tautomers of aromatic ligands is discussed.

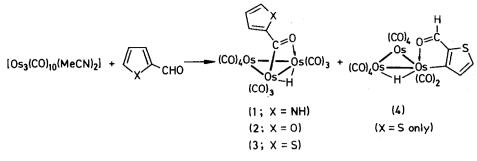
Introduction

We have been interested in the reactions of α,β -unsaturated aldehydes with triosmium clusters because oxidative addition can occur with C-H cleavage either at the formyl or the alkenyl group [1]. In the former case μ -acyl complexes are generated. 2-Formyl-pyrrole, -furan, or -thiophene might be regarded as α,β -unsaturated aldehydes, so that oxidative addition could occur at the CHO group or at the ring. Previously it has been shown that oxidative addition of the ring C-H bonds occurs for pyrrole [2] and furan [3] to give triosmium clusters.

Results and discussion

Scheme 1 shows the reactions of the aldehydes with $[Os_3(CO)_{10}(MeCN)_2]$. In the case of the pyrrole and furan derivatives only products 1 (66%) and 2 (60%), formed

TABLE 1

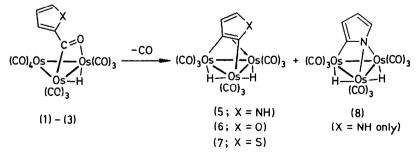

SOME SPECTROSCOPIC DATA FOR COMPOUNDS 1-10

Compound	ν(CO) ^a (cm ⁻¹) Terminal carbonyl ligands	ν (CO) ^b (cm ⁻¹) Acyl ligands	¹ H NMR ^c				,
$[0s_3H(CO)_{10}(HNCH^{x}=CH^{y}CH^{z}=CCO)]^{d}$ (1)	2104m, 2066vs, 2056s, 2028vs, 2016s, 2010sh, 1983m	1425 /	8.90br 7.20m 7.00m 6.30m	HN z x A	J _{xz} J _{xy} J _x (NH)	1.2 4.0 1.6 2.4 ^g	1
$[0s_3H(CO)_{10}(OCH^*=CH^{y}CH^{z}=CCO)]^{d}$ (2)	2100m, 2062vs, 2052s, 2022vs, 2010s, 2006sh, 1990m, 1974m,	1430	- 13.05 8.14d 6.78dd 7.34d - 13.6s	Osh Z Osh	J_{xy} J_{xz} J_{xz}	2.5 ° 1.7 3.7 0.7	
[0s ₃ H(CO) ₁₀ (SCH [*] =CH ^y CH ² =CCO)] ^e (3)	2106m, 2065vs, 2054s, 2023vs, 2014vs, 2009sh, 1995m	1435	7.81m 7.14dd - 13.6s	x,z y OsH	J _{yz}	4.0 4.0	
[Os,H(CO),0(SCH ^x =CH ^y C=CCH ^z O)] ^e (4)	2122m, 2069s, 2049s, 2021vs, 2008s, 1980m 1938m,	1445	9.15d 8.07d 7.51dd - 15.0s	<i>ت بر x</i> OsH	J _{x2} J _{x2}	4.7 0.5	
[0s,H2(CO),(HNC=CCHx=CH ^y)] *	2105m, 2075vs, 2050vs, 2027vs, 2022sh, 2008vs, 1991m, 1978m, 1950vw	£	8.60br 7.16dd 6.70dd - 18.9s - 16.7br - 21.1br	NH y x OsH ₂ OsH ₂	$ \begin{array}{l} J_{x,y} \\ J_{x}(\mathrm{NH}) \\ J_{y}(\mathrm{NH}) \\ (30^{\circ}\mathrm{C}) \\ (-85^{\circ}\mathrm{C}) \end{array} $	3.1 1.3 ¢ 1.7 ¢	

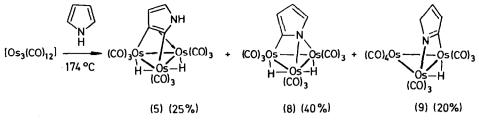
372

$[Os_3H_2(CO)_6(SC=CCH^x=CH^y)]^{\epsilon}$ 2008m, 2081vs, 2054, 2054, 2054, 2081vs, 2054, 2080vs, 2008vs, 2	-0403, 40103,				
	>	-19.4s) OsH2	(35°C)	
		- 17.4br	OsH ₂	(-80°C)	
	2108m, 2081vs, 2054vs,	7.44d	X	J _x ,	5.1
	2033vs, 2024s, 2008vs,	7.29d	v	ì	
1999s, 1985n	1999s, 1985m, 1973mw,	– 19.2s	0șH ₂	(35°C)	
1958w	1 1	- 18.3br } - 20.2br }	0sH ₂	(-80°C)	
$H_2(CO)_6(NCH^x=CH^yCH^z=C)$	2105m, 2080vs, 2050vs,	7.50dd	8 Z	J _x ,	4.3
	2027sh, 2025vs, 2005vs,	7.40dd	×	Jyz	1.2
1997m, 1978m	978m	6.62dd	y	Jxr	0.9
	1	- 16.3s	OsH ₂	(30°C)	
		-15.6d	OsH ₂	(-40°C) ^j	
$[0s_3H(CO)_{10}(N=CCH^{x}=CH^{y}CH_{2}^{z})]$ 2102m, 2060	2102m, 2060vs, 2050s,	7.04dt	×	J_{xy}	5.3
	2020vs, 2006m, 2001m,	6.60dt	ý	Jxz	0.7
1993m, 1980w	980w	4.70br	N	J _{vz}	1.7
		– 15.2s	OsH	,	
$[0s_3H_2(CO)_9(Me\dot{N}C=CCH^x=\dot{C}H^y)]$ 2104m, 2074	2104m, 2074vs, 2048vs,	7.06d	×	J _x ,	3.6
	2025vs, 2022sh, 1998vs,	6.66d	x		
• •	1989m, 1976m, 1945w	3.60s	NMe		
		– 18.8s	OsH ₂	(27°C)	
	1	– 17.0br	11-0		
	1	– 21.1brĴ	USH ₂	(

H) 3464 cm^{-1} . ^{*g*} Coupling not well resolved in H^{*z*} signal. ^{*h*} ν (NH) 3450 cm⁻¹. ^{*i*} This compound was originally reported [2] as compound 5 but is now reformulated. 373



SCHEME 1


by C-H cleavage at the formyl group, were obtained. The thiophene derivative likewise gave 3 (40%) as the major product but some compound 4 (30%) was also obtained. Compounds 1 to 3 are closely related to known bridging acyl compounds of the type $[Os_3(\mu-H)(\mu-RCO)(CO)_{10}]$ [4-6] and show similar $\nu(CO)$ absorptions for the terminal CO ligands and for the bridging acyl (1425-1435 cm⁻¹) (see Table 1). The formyl group is preserved in compound 4, as shown by the ¹H NMR spectrum (δ (CHO) 9.15 ppm). Compound 4 is structurally directly comparable with $[Os_3H(CO)_{10}(RC=CHCOMe)]$ (X-ray structure [7]) and the aldehydic derivatives $[Os_3H(CO)_{10}(RC=CHCHO)]$ (R = Ph or Me) [1] which contain chelating α,β -unsaturated aldehydes or ketones. When the ligand X in $[Os_3H(X)(CO)_{10}]$ is chelating at one Os atom, the ν (CO) spectrum is characteristically different from that when X is bridging as in compounds 1 to 3. The behaviour of 2-formylthiophene with $[Os_3(CO)_{10}(MeCN)_2]$ is very like that of RCH=CHCHO (R = Me or Ph) in giving competitive C-H cleavage at the CHO group and the β -vinyl site [1].

There seems no intrinsic reason why 2-formylfuran and 2-formylpyrrole could not also react at the ring sites as well as, or instead of, at the CHO group. Indeed, furan itself reacts with $[Os_3(CO)_{10}(MeCN)_2]$ to give $[Os_3H(C_4H_3O)(CO)_{10}]$ (26% yield) by metallation at the 2-positon. The 2-furanyl group was shown by the X-ray structure to bridge in a η^1, η^2 -manner, like a bridging vinyl ligand [3].

Compounds 1 to 3 readily undergo thermal decarbonylation to give compounds 5 to 8, as shown in Scheme 2. Interestingly compound 5 was reported earlier to be formed by direct reaction of pyrrole at very high temperatures in refluxing decalin

SCHEME 2

SCHEME 3

(around 190°C) [2]. We have re-examined these compounds and have found that compound 5 as reported here is directly comparable with compounds 6 and 7, and that the compound we originally and incorrectly described as 5 [2] is actually an isomer which we now formulate as compound 8. Indeed in the decarbonylation of 1 both isomers 5 and 8 are obtained. Compound 6 was reported earlier to be formed by decarbonylation of $[Os_3H(\mu_2-C_4H_3O)(CO)_{10}]$, itself formed from furan [3]. This is the first report of the thiophene-2,3-diyl compound 7, and it is perhaps surprising that this is formed rather than any compound containing Os-S bonds in view of the proliferation of such compounds [8].

In our initial report on the products of the reaction of $[Os_3(CO)_{12}]$ and pyrrole and N-methylpyrrole we commented upon the differences between the two derivatives $[Os_3H(CO)_9(\mu_3-C_4H_2NR)]$ (R = H or Me) that were isolated [2]. Compound 10 when R = Me can now be seen to be spectroscopically entirely analogous to compounds 5 to 7, and different from the species we originally reported with R = H. When there is an NH atom, the initially formed compound 5 isomerises by transfer of this hydrogen atom to carbon to give the more stable isomer 8. Carrying out the reaction of pyrrole with $[Os_3(CO)_{12}]$ at temperatures below 190°C gave a mixture of isomers 5 and 8 and other products (Scheme 3; see later).

The formulation of cluster **8** as the N,C-bonded form is based on ¹H NMR and IR data. The originally reported ν (NH) absorptions for **8** at 3670 and 3600 cm⁻¹ are spurious. These absorptions were found for Nujol mulls but completely pure samples give no ν (NH) absorptions in this region, whereas isomer **5** shows an absorption at 3450 cm⁻¹, close to that found for compound **1** (3464 cm⁻¹). The ¹H NMR signal originally reported for NH at δ 7.50 ppm can with hindsight be seen to be too sharp for such a resonance, and is now assigned to CH (see Table 1). Isomer **8** gives ¹³C{¹H} NMR signals for the CH atoms at δ 117.2, 149.3, and 167.8 ppm (3-, 4-, and 5-positions) and a weak absorption at δ 175.9 ppm (2-position).

We have examined the conversion of isomer 5 into isomer 8. Treatment of isomer 5 with $D_2O/CDCl_3$ caused a very slow exchange of the NH proton over many hours, but upon addition of catalytic quantities of NEt₃ the exchange was complete within 2–3 min at room temperature, that is within the time required to record a ¹H NMR spectrum. Figure 1 shows the NMR spectra confirming this exchange. On standing a solution of $[Os_3H_2(CO)_9(C_4H_2ND)]$ (5) (still containing an excess of D_2O) is slowly converted into $[Os_3HD(CO)_9(C_4H_3N)]$, isomer 8. Thus the H-atom transfer to carbon is from osmium and not nitrogen. Various mechanisms are possible, but not an intraligand H-atom transfer. We have formulated compound 8 in Scheme 2 with bridging nitrogen, but we cannot yet actually distinguish this from

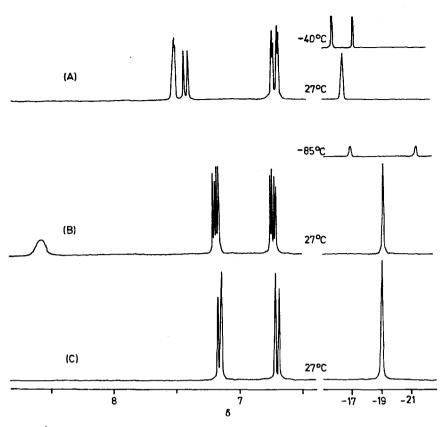
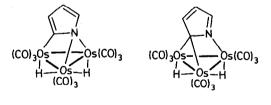
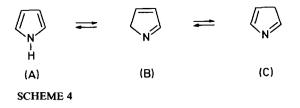



Fig. 1. ¹H NMR spectra of CDCl₃ solutions of (A) cluster **8** $[Os_3H_2(C_4H_3N)(CO)_9]$, (B) cluster **5** $[Os_3H_2(C_4H_2NH)(CO)_9]$, and (C) cluster **5** after treatment of a CDCl₃ solution with D₂O and Et₃N (catalytic amounts).


a carbon-bridged form. We are trying to grow good crystals for an X-ray structural determination in order to distinguish between forms 8a and 8b.

(8a)

The other product from the reaction of pyrrole with $[Os_3(CO)_{12}]$ at 174°C is compound 9, $[Os_3H(CO)_{10}(C_4H_4N)]$. As with 8, compound 9 is bonded through nitrogen. The IR spectrum near 2000 cm⁻¹ is almost indistinguishable from that of the 2-pyridyl compound $[Os_3H(CO)_{10}(C_5H_4N)]$ and other 2-metallated nitrogen heterocycles [9], and this confirms the N,C-mode of attachment. The ¹H NMR spectrum (Table 1) confirms the non-aromatic form of the ligand, Indeed, in compound 9 an unstable tautomer of free pyrrole has been stabilised (see Scheme 4). The two non-aromatic forms, B and C, without N-H bonds, are clearly unstable

(8b)

with respect to A. We believe we have trapped form B in compound 9 with the CH_2 group adjacent to nitrogen on the basis of the ¹H NMR shift for the CH_2 protons which are accidentally isochronous. In both compounds 8 and 9 non-aromatic forms of the ligand are stabilized, the loss of aromaticity being compensated for by the formation of N-Os bonds. The stabilization of the cyclohexadienone form of phenol by the triosmium cluster has previously been described, and this is mainly a consequence of forming strong σ -bonds between osmium and the μ_3 -ligand.

Experimental

2-Formylfuran (2-furaldehyde), 2-formylpyrrole (2-pyrrolaldehyde), and 2-formylthiophene (2-thiophenaldehyde) were synthesised by literature methods or purchased from Aldrich. $[Os_3(CO)_{10}(MeCN)_2]$ was synthesised as described earlier [1].

Reaction of $[Os_3(CO)_{10}(MeCN)_2]$

2-Formylfuran. A solution of $[Os_3(CO)_{10}(MeCN)_2]$ (0.300 g) and freshly purified $C_5H_4O_2$ (1 cm³) in LiAlH₄-dried cyclohexane (50 cm³) was heated under reflux under N₂ for 4 h. Removal of the solvent under vacuum and separation of the residue by TLC (SiO₂, eluant, n-hexane) gave four bands. The main yellow band gave $[Os_3H(CO)_{10}(\mu$ -OCH=CHCH=CCO)] (2), as yellow crystals (0.180 g, 60%), and another band gave $[Os_3H_2(CO)_{10}]$ as purple crystals (0.030 g, 10%). The other two bands only gave traces of compounds which were not characterised.

2-Formylpyrrole. A solution of $[Os_3(CO)_{10}(MeCN)_2]$ (0.350 g) and C_5H_5ON (0.30 g) in dried cyclohexane (40 cm³) was heated under reflux for 3 h under nitrogen. The brown residue after removal of solvent under vacuum was separated by TLC (SiO₂; eluant, pentane) and gave four bands of which only one gave any significant amount of material which was characterised as $[Os_3H(CO)_{10}(\mu-HNCH=CHCH=CCO)$ (1), as yellow crystals (0.200 g, 66%).

2-Formylthiophene. A solution of $[Os_3(CO)_{10}(MeCN)_2]$ (0.250 g) and freshly distilled C_5H_4OS (2 cm³) in dried cyclohexane (30 cm³) was heated under reflux under N₂ for 2 h. The orange-yellow residue after removal of solvent was separated by TLC [SiO₂; eluant, petroleum ether (b.p. 40–60°C)] to give only two bands. The main one gave $[Os_3H(CO)_{10}(\mu$ -SCH=CHCH=CCO] (3), as yellow crystals (0.080 g, 40%) and $[Os_3H(CO)_{10}(SCH=CHC=CCHO)]$ (4), as yellow crystals (0.060 g, 30%).

Reaction of $[Os_3(CO)_{12}]$ with pyrrole

The reaction previously carried out in refluxing decalin [2] was repeated at somewhat lower temperatures. A solution of $[Os_3(CO)_{12}]$ (0.200 g) and pyrrole (3 cm³) in n-decane (50 cm³) was heated under reflux for 4 h. Removal of the solvent

under vacuum and TLC separation (SiO₂; eluant, petroleum ether (b.p. 40-60°C)) gave four bands yielding: $[Os_3H_2(CO)_9)(\mu_3-NCH=CHCH=C)]$ (8), as yellow crystals (0.080 g, 40%) the isomeric form of this $[Os_3H_2(CO)_9(\mu_3-NH=CCCH=CH)]$ (5), as pale yellow crystals (0.050, 25%), $[Os_3H(CO)_{10}(\mu-N=CCH=CHCH_2)]$ (9), as yellow crystals (0.040 g, 20%), and a trace of $[Os_3H_2(CO)_{10}]$.

Thermolysis of acyl compounds 1-3

Compound 1. A solution of $[Os_3H(CO)_{10}(HNCH=CHCH=CCO)]$ (0.200 g) in n-decane (50 cm³) was heated under reflux for 15 min. Removal of solvent under vacuum and TLC separation (SiO₂, eluant: petroleum ether (b.p. 40-60°C)) gave two main yellow bands yielding $[Os_3H_2(CO)_9(NCH=CHCH=C)]$ (8), (0.080 g, 40%) and its isomer (5), (0.060 g, 30%) both as yellow crystals. Using rather lower temperatures (refluxing n-octane) gave mainly compound 5 (65%).

Compound 2. A solution of $[Os_3H(CO)_{10}(OCH=CHCH=CCO)]$ (0.150 g) in octane (30 cm³) was heated under reflux for 4 h. Removal of the solvent under vacuum and TLC separation as above gave several minor bands which were uncharacterised and one main yellow one which yielded $[Os_3H_2(CO)_9-(OC=CCH=CH)]$ (6), as yellow crystals (0.060 g, 40%) which was characterised by comparison with published spectroscopic data for this compound [3].

Compound 3. A solution of $[Os_3H(CO)_{10}(SCH=CHCH=CCO)]$ (0.125 g) in cyclohexane (50 cm³) was heated under reflux for 15 h and subsequent work-up as above gave two main species: $[Os_3H_2(CO)_9(SC=CCH=CH)]$ (7) as yellow crystals (0.062 g, 50%) and recovered 3 (0.031 g, 25%).

References

- 1 A.J. Arce, Y. De Sanctis and A.J. Deeming, J. Organomet. Chem., 295 (1985) 365.
- 2 C. Choo Yin and A.J. Deeming, J. Chem. Soc., Dalton Trans., (1982) 2563.
- 3 D. Himmelreich and G. Müller, J. Organomet. Chem., 297 (1985) 341.
- 4 K.A. Azam and A.J. Deeming, J. Chem. Soc., Chem. Commun., (1977) 472; K.A. Azam and A.J. Deeming, J. Mol. Cat., 3 (1977) 207; K.A. Azam, A.J. Deeming and I.P. Rothwell, J. Chem. Soc., Dalton Trans., (1981) 91.
- 5 A. Mayr, Y.C. Lin, N.M. Boag and H.D. Kaesz, Inorg. Chem., 21 (1982) 1704.
- 6 B.F.G. Johnson, J. Lewis, T.I. Odiaka and P.R. Raithby, J. Organomet. Chem., 216 (1981) C56.
- 7 A.J. Deeming, P.J. Manning, I.P. Rothwell, M.B. Hursthouse and N.P.C. Walker, J. Chem. Soc., Dalton Trans., (1984) 2039.
- 8 R.D. Adams, Acc. Chem. Res., 16 (1983) 67; R.D. Adams and J.P. Selegue in F.G.A. Stone, G. Wilkinson and E.W. Abel (Eds.), Comprehensive Organometallic Chemistry, Pergamon Press, Oxford, 1982, Vol. 4, p. 967.
- 9 J.R. Shapley, O.E. Samkoff, C. Bueno and M.R. Churchill, Inorg. Chem., 21 (1982) 634.